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Abstract

This paper presents a randomized algorithm called Ratchet that asymptotically minimizes
{with probability 1) functions that satisfy a poesitive-linear—dependent (PLD) property. We
establish the PLD property and a corresponding realization of Ratchet for a generalizod loss
criterion for both lincar machines and lincar classifiors. We deseribe several learning eriteria
that can be obtained as special cases of this generalizod loss criterion, ¢.g. classification or-
ror, classification loss and weighted classification crror. We also establish the PLD propoerty
and a corresponding realization of Ratchet for the Neyman—Dearson criterion for linecar clas-
sifiors. Finally we show how, for lincar classifiers, the Ratchet algorithm can be derived as a
moadification of the Pocket algorithm.

1 Introduction

To motivate the concepts introduced in this paper we desceribe two learning problems which
posscss a comanon property that enables to wunified approach to their algorithin development.
We begin with some definitions. Tet 2 € B and w € R". We say that z is w-positive if
w+z > 0 (where - is the usual inner product). Tet 7 be a countably infinite set and consider a sct
Z = {{#1.41) s eoes (0o tn)} CR™ x T where z; € R™ and {#1.....4,} C T (this definition allows the
sct Z to have repeated values of 2 distinguished by their index value 7). We use the abbreviated
notation 7 = {z,....2,} for this set and we call this type of sct a multisample. In addition
we call {i1,....i} the index set for Z. Similarly we denote the subset {(z5,45). ... (4. x)} € Z
by {2i;. ... 2, } and refer to it as a subsample of Z with index set {4j.....ix} € {if..citp}. We
define Z+ C Z to be a positive linear (PL) subsample of Z if there cxists an w € R such that
all members of Z*+ are w—positive, and define

Ot ={w:w-5 >0y € 2t}

to be the witness set for Z+. For technical reasons we define the empty set to be a PL multisample
with the whole space as its witness set. Finally we define P(Z) = {Z}F. Z5 . ..} to be the (finite)
seb of all PL subsamples Z;r of Z.



In the first problem we are given a multisample Z = {z1. .... 2, } and asked to determine a value
w € B™ that maximizes the critevion B(w) = [{2z; c w2z > 0.4 = 1,2,...,n}|. Geometrically we
seck a hyperplane through the origin that dichotomizes R™ so that the number of samples in the
positive half-space is maximized. This problem is closcly related to the problem of determining a
lincar classificr that maximizes the number of correctly classified training samples for a two-class
classification problem. Now congider the collection of all lincar dichotomics of Z and the corre-
sponding collection of PL subsamples of Z formed from the positive samples of these dichotomics.
These PL subsamples form a subset of P(Z) that accounts for all criterion values, that is the
criterion values for this problem arc witnessed by this subsct of P(Z).

In our seccond problem we are given a multisample Z = {z11. 21,90 F2,1. 22,20 wees Zn1s2n,2 } Where
the samples are paired according to their first index, and we are asked to determine a valuew € R
that maximizes the criterion Rlw) = [{{(zi1,202) : w21 > Oand w29 > 0.4 = 1.2, n}.
Geometrically we seck a liyperplane through the origin that dichotomizes R™ so that the number
of sample pairs in the positive half-space is maximized. This problem is closely rclated to the
problem of determining a lincar machine that maximizes the number of correctly classified training
samples for a three-class classification problem (e.g. see (Cannon, Fugate, Hush. & Scovel, 2003)).
Now define the positively paired subsample for avalucw tobe {z;; € Z : w21 > 0 and w-z;9 > 0}.
This is the PL subsample of Z containing all the individual samples from w-positive sample pairs.
Now consider the collection of positively paired subsamples defined by all w € R™. This collection
forms a subsct of P(Z) that accounts for all criterion values, that is the critervion values for this
problem arc witnessed by this subsct of P(Z).

Although the witness subset for the first problem may be different than the sccond, the two
problems above arc similar in that their criterion values are witnessed by some subset of P(Z2).
This paper deseribes several important learning problems share this property. In principle all
such problems can be solved in a finite number of steps by scarching over a finite subsct of
R™ that witnesses the members of P(Z). but this approach is not cfficient since |P(Z)] can be
cxponential in the dimension m. Furthermore, the specific problems of interest here can all be
shown to be NP-Hard. On the other hand. the first problem above can be solved by the Pocket
algorithm (Gallant, 1990). Pocket is a simple randomized algorithm that produces an optimal
solution asymptotically (with probability 1). and has proven to be effective in empirical studics
where it is terminated after a finite number of steps (Burgess, Zenzo, & Granieri. 1992; Gallant,
1990; Golea & Marchand. 1990; Windeatt & Tebbs, 1997). Tu this paper we show how to modify
the Pocket algorithm to obtain a simple randomized algorithm called Ratchet that visits overy
member of P(Z) (asymptotically with probability 1) and therefore produces an optimal solution
to any problem whose criterion values are witnessed by a subset of PP(Z).

Formally the Ratchet algorithm minimizes functions that satisfy a property we call positive—
linear—dependent (PLD). Scction 2 defines the PLD property and presents the Ratchet algorithm.
To rcalize Ratchet for a particular function we must construct a map ¢ that witnesses the PLD
property.  Secction 3 cstablishes maps ¢ that witness the PLD property for a gencralized loss
criterion for both lincar machines and lincar classifiers. Scveral important learning criteria are
obtained as special cases of this gencralized loss criterion. This scetion also shows how. for
lincar classifiers. the Ratchet algorithm can be derived as a modification of the Pocket algorithm
(Gallant, 1990). In Scction 4 we show how Ratchet can be applied to the Neyman-—Pearson
learning problem by cstablishing a map ¢ that witnesses the PLD property for the Neyman-—
Pcarson criterion.



2 PLD Criteria and the Ratchet Algorithm

The Ratchet algorithm was introduced by Cannon ct al. (Cannon ct al., 2003) to solve a learning
problem rclated to the task of sclecting a vestoration method for digitized documents in such
a way that the average OCR arvor of the documents is reduced. This section summarizes the
relevant results from that paper.

We consider minimization problems with criteria R that satisfy the following definition.

Definition 2.1. Let A be a set and let R be a function from A x R™ to R Suppose that for
every A € A, Ry = R(A.-) achicves its infimum on a nontrivial set Q*(A) C R™. Then R is a
positive~linear—dependent (PLD) function if there exists a map to multisamples ¢ 1 A —— R™ x T,
such that for cvery A € A there exists a PL subsct of the multisample ¢(A) = {ziy. 2.}, 2 €
R™ {i1.d2....} C T whosc witness set Q7 satisfies QT C Q*(4).

In our application to learning problems A is the set of all training scts. R™ is the classifier
parameter space, and R4 is an empirical error function that we wish to minimize with our choice
of parameter w € R™.

The Ratchet algorithm in Algorithm 1 is a simple algorithm for optimizing a PLD criterion
when a map ¢ is known. This algorithm simply runs the randomize perceptron algorithm on the
nultisample Z = ¢(A4), computes the criterion value R4 cach time w changes value and saves the
onc with the smallest criterion value. The following theorem from Cannon, et al. (Cannon ct al.,
2003) cstablishes the optimality of this algorithm. The central idea in the proof of this theorem
is to show that with probability 1 the w visited by the randomized perceptron algorithm witness
cvery PL subset of Z.

Theorem 2.1. Let R be a PLD criterion witnessed by a map ¢. For every A € A consider the
sequence w(k). k = 0,1, ... produced by the Ratchet algorithm with inputs A. R, ¢. Let w*(k),k =
0.1.... be a sequence that satisfies w* (k) € argmingyi=o,1,... .k Ra(w(i)). Then

Ra(w*(k)) ES 115111{4(&1)
where wpl denotes “with probability 1°.

To realize Ratchet for a particular PLD criterion we must construct a map ¢ that witnesses
the PLD property. To assist in the determination of such a map. and in verification of the PLD
property, the following lemma is cstablished in Cannon et al. (Cannon et al., 2003). This lemma
gives sufficient conditions that can be checked once a map ¢ has been proposed.

Lemma 2.1. Let A be o set and let R be a function from A X R™ to R. Suppose that for every
A€ A Ra = R(A.") achieves its infimum on a nontrivial set @*(A) CR™. Let ¢ : A =-— R™ xT
be a map to multisamples. For A € A let Z = ¢(A) = {2y - 2, }o 21, € R™ i1, .0yin} C T and
let Jt(w) = {¢; : w2, > 0} denote the index set of w-positive samples from Z. If for every
A€ A and every w € R there exists an & € R™ such that

2.1.1. JH&) D J ™ (w)
2.1.2. Ra(d) = Ra(w)
2.1.3. (wo.wi € R™ and J* (o) 2 JT(d1)) = (Ralwo) < Ralwr)).

then R is PLD witnessed by ¢.



Algorithm 1 Ratchet: In practice w* is returned after a finite number of steps.

INPUTS: An clement A € A, a criterion function R, and a map ¢

{Compute the multisample Z}
Z = {-zh* c,n} — (,Z')(A)

{Initialize parameters. }
Set w(0) and w* to zero and set R* « Ra(w*).

{Perform the randomized perceptron algorithm and track the best solution. }
k+0 ;
loop
1 ¢ random sample index drawn uniformly from {4y, 49, ... %p }
if (w(k) -2 <0) then
wlk +1) ¢ w(k) + 2
if (Ra(w(k+1)) < I¥*) then
R* + Ralw(k +1))
w* e wk+1)
end if
else
wlk +1) ¢ w(k)
end if
ke k+1
end loop

3 The Generalized Loss Criterion

In this section we determine computable maps ¢ that witness the PLD property for a generalized
loss eriterion. Through appropriate choices of a loss function we show how this criterion realizes
several important criteria encountered in standard learning problems for lincar machines and
lincar classificrs. In addition we show how, for lincar classifiers, the Ratchet algorithm can be
derived as a modification of the Pocket algorithm (Gallant, 1990).

3.1 The M—Class Problem with Linear Machines

Consider the following M—class learning problem. Let A be the set of natural numbers and
define A = Upso(RY x RM x N)* to be the sct of training scts where the multisample A =
{(z1.0) oo (200 ln)} € A is a training sct with n samples, 2; € R? is the feature vector for the
i—th sample and 4 = (;(0).....(M — 1)) € RV is the corresponding loss vector. The value
1;(j) represents the loss incurred when zy is assigned to class j. Let M = {0,1,.... M — 1} and
w = (wy Wy wyy) € RY (+1) and consider the family of lincar machines f,, : R — M defined
by

»@) = max k 1
ole) = e W



where K (2) is the subset of M given by

Ku(z) = argmax wy, - (1, x). (2)
keM

The generalized loss criterion R : A x R - R is defined by
T
Ra(w) =D lilfulw)): (3)
i=1

Important special cases of this criterion are obtained when y; € M is the correet class label for
x; and we set loss values as follows.

1. The elassification error criterion is obtained by sctting
Li(d) = 10 # wi)-

where I(+) is the indicator function that takes a value 1 when its argument is true and 0
otherwise.

2. The classification loss criterion is obtained by sctting
li(7) = <(dowi)

where ¢ is a M x M loss matrix. This criterion is often employeed with the diagonal clemnts

of ¢ sct to 0 (so that the loss for correct classification is 0). The off-diagonal clements

represent losses for cach of the M (M — 1) different error types. Setting (4, 7) = 0.V and

e(4. k) = 1,Y9 # k gives the classification error criterion above which is also called the “0-17

loss criterion.

The following theorem is proved in Cannon, ¢t al. (Cannon et al., 2003).

Theorem 3.1. The function R : A x R*Y — R defined by (3) is PLD witnessed by the map ¢
in Definition 3.1 below.

The map ¢ described here is an extension of Kesler’s construction for the multiclass problem
(sce p. 266 in (Duda, Hart, & Stork, 2000), pp. 87-93 in (Nilsson. 1990). and (Smith. 1969)).

Definition 3.1. Let 2 = (1 x RHM and let p : R —— 2 x N2 be the map p = papy where
p1: R — 1 xRY js defined by 2 + (1.2) and pp : 1 x R —— Z x A2 is the map to multisamples
defined by

E {aiCipnnd 1SG <M k:1<kSME#)

where (je € 2 is the vector obtained by concatenating M vectors as follows: & = (1.2) is placed
in the j—th position, —¢ in the k—th position, and zero vectors are placed in the other M — 2
positions as illustrated below,

gjk pasey (0...0 5 O...O —f O...O)-
g A Vg
jfl.. Jeth

(&2



Now define ;1 to be the jk—th member of p(x;). Let € > 0 and define

€ Li(7) = (k) . . .
Agige = ' 1<i<nl<j<Mk:1<k<Mk#j
ik { Li(k) — 1;(j). otherwise SRS SksMk#

With z;j: = Agjrijr the map ¢ : A —— Z X N 3 to multisamples is given by

P(A) = {...,.Z.ijk, .-}y Vijk such that A > 0.

3.2 The 2-Class Problem with Linear Classifiers

When M = 2 it is simpler to use a lincar claggifier than a 2-class lincar machine. In this scction
we prove the PLD property for the general loss criterion over lincar classifiers. As a consequence
we obtain a map ¢ that is much simpler than Definition 3.1. In addition we show how, for
this criterion. the Ratchet algorithm can be derived as a modification of the Pocket algorithm
(Gallant, 1990).

We consider the same learning problem described in the previous section exeept that we restrict
to M = 2 and we replace the class of lincar machines with the class of lincar classificrs f,, : RY —
{0,1} defined by

N 05 W(I‘J')SO
fw(a»)~{ L e L0 "

where w € R4HT,

In addition to the special cases of the gencralized loss criterion deseribed in the previous section,
a third case ariscs here. The weighted classification error criterion is obtained by sctting

Li(g) = %I(5 # w)

where v > 0.4 = 1,2,..,n and y; € {0.1} is the correct class label for #;. This criterion is
encountered in many boosting algorithms. For example cach round of the AdaBoost algorithm
determines new values for 44,4 = 1.2.....n. and then sccks a base classifier that minimizes the
corresponding weighted classification crror (Freund & Shapire, 1997).

We now describe how the Ratchet algorithm can be derived as a modification of the Pocket
algorithm, Gallant introduced Pocket to minimize the classification error criterion for lincar
clagsificrs. Pocket operates by running the randomized perceptron algorithm on the multisample
Z = {z1,ey 2 bz = (2 — 1)(1, ). computing the run length for cach w visited (i.c. the num-
ber of consecutive w—positive samples encountered before w is modified by the algorithm). and
retaining the w(k) with the largest run length in the “pocket”. Gallant also introduces a variation
called Pocket~with-Ratchet that places a new value of w in the pocket only when it has hoth a
larger run length and witnesses a smaller criterion value. These Pocket algorithms are attractive
becausge the run length is very simple to compute, but they may not be appropriate for the gener-
alized loss criterion. For example consider the obvious adaptation of the Pocket-with-Ratchet
algorithm that opcrates on the same multisample Z and replaces the value of w in the pocket
when the run length is larger and the criterion value R 4(w) is smaller. With (;(4) = I(j # y;) this




criterion is minimized when the number of positive samples in Z is maximized and so valuces of w
with larger run lengths are more likely to have smaller criterion valucs, but this is not necessarily
true for the generalized loss. In fact it scoms unlikely that any statistic computed on w-positive
samples only can be used to order the classifier space for the generalized loss. More generally the
determination of a suitable replacement for the run length rule remains an open problem. The
Ratchet algorithm is obtained by removing the run length rule from Pocket-with-Ratchet so
that a value of w with the smallest criterion value is saved in the pocket. This requires that the
criterion value be computed cach time w is modified and therefore requires more computation
than the Pocket algorithms, but it yiclds a viable algorithm. Indeed, Theorem 3.2 below veri-
fies that the generalized loss criterion for lincar classifiers is PTD witnessed by a map that gives
zi = (Li(0) — L(D) (L. a).

Theorem 3.2. The function R : A x RHY — R defined by (3) with M = 2 and f, defined by
(4) is PLD witnessed by the map ¢ : A —— R x N defined by ¢({(x1.0). s (Tnln)}) =
{z1 o zn} oz = (L(0) — L(1) (1, 2y).

Proof. For any A € A and any w € R the criterion value is a finite sum and therefore the
eriterion achicves its infimum on a nontrivial set Q*(A4) C R, Define & = (1, ;) and write

Ra(w) = 3 bl fulai)
i=1
= L0 <0) + B & > 0).
i=1

Define A; = [;(0) — £;(1) and write the criterion valuc as

Ratw) =3 (I(8i > 0) (5(0) ~ |AiI(w-& > 0) +

i=1

(8 <0) (4(1) ~ 1Al & < 0)) + I(A;=0) 4(0))

= 5" max(1;(0),1;(1)) JA,:J(I(A,: >0w-&>0) +I{A; <Ow &< 0))
i=1

n
= 3" max(l;(0). (1)) ~ |Ay| (I(A.,—_ £0.Ajw & > 0) + T{A; < 0. Aw - & = 0)).
i=1
The definition of ¢ gives z; = A& so that

Ralw) = fjmax(zi(c)).z,,-,(n) — 18] (1A # 0w 2> 0) + I(A; < 0.0+ 2 = 0)) 5
i=1 6)
= O = A (18 # 0w 2 > 0) + I(A; < 0,0+ 7 :o)).

where ¢ = Y max(1;(0),/;(1)). To complete the proof we verify conditions 2.1.1-2.1.3 in
Lemma 2.1, Let Z = {2..... 2, }. For any w € R let

5—{1' wez =0forall z € Z

, otherwise

Mil ez got0 |W* %4



and let
W =w—(6/2,0). 0€R.
This gives

oz > |Al6/2 >0, when (A; #0,w-2 >0) or (w-2z =0,4; <0)
ez < —|A]8/2 < 0. when (A; #0,w-2 <0)or (w-z=0,4; >0)

and therefore condition 2.1.1 holds and (5) can be written

n
Ra(w) = Ra(@) =C =Y |AH(A #0.0-z>0=C~ Y |A.
=1 i€ J ()

which verifies condition 2.1.2. The right hand side of this expression also establishes a monotonic
relation between nested sets JH and the values of R,y This verifics condition 2.1.3 and completes
our proof. ¢

4 The Neyman—Pearson Criterion

The Neyman-—Pearson problem is a 2-class problem where the goal is to maximize the correct
classification for one class subject to an upper bound on the classification crror for the other
class, Cannon ct al. (Cannon, Howse, Hush, & Scovel, 2002b) describe a learning strategy
for the Neyman-Pearson problem that determines a classifier from sample data by solving a
constrained optimization problem. We restriet to linear classifiers and reformulate this constrained
optimization problem as an unconstrained optimization problem. We then provide a simple map
¢ that witnesses the PLD property for the unconstrained optimization criterion.

Define A = Ugso(RY x {0,1} x A)* to be the sct of training scts where the multisample
A= {(#1.41). s (Tn. Yn)} € A is a training set with n samples, 2; € R? is the feature vector for
the +—th sample and y; € {0,1} is the corresponding class label. Let f, : R — {0,1} be the
class of lincar classifiers defined by (4). The fraction of samples from class 0 that arc correctly
clagsified by f,, is denoted

colf) = — 3 I(fulai) = 0.

N
0 =0

and the fraction of samples from class 1 that are incorrectly classified by f,, is denoted

r(f) = o S 1fulei) £,

drye=1

where n; is the number of samples with y = j. If ng = 0 then we define co(f,) = 1 and if n; = 0
we define e1(f,) = 0. The Neyman-Pearson learning strategy chooses a classifier that solves the
constrained optimization problem (Cannon ct al.. 2002b)

max,ecpa+t ol fu)
subject to  ey(f,) < @

(6)



where o« > 0. A solution to this problem always cxists because the set of lincar classifiers that
satisfy the constraint is nontrivial for any training st A € A. Thus we can reformulate (6) as the
following unconstrained optimization problem

min —eo(fu) + plea(f.) — @) (7)

wekd+1

where the penalty function p is defined by

0, <0
) = -
p(6) {oo. > 0.

Conscquently the Neyman—Pearson criterion IR @ A4 RHL 3 R is defined by
Ra(w) = —colfu) +pler(fo) — o). (8)
The following theorem provides a simple map ¢ that witnesses the PLD property for this eriterion.

Theorem 4.1. The function R : A x R — R defined by (8) is PLD witnessed by the map
¢ A - R s N defined by d({(x1.y1)s s @y )} = {200 oot oz = (20 — (1, 24).

Proof. This proof is structured similarly to the proof of Theorem 3.2. For any A € A and any
w € R ghe criterion value is a finite sum and thercfore the criterion achieves its infimum on a
nontrivial set Q*(A4) € R4, Define & = (1.2;) and write

RA(U)) = "'(’O(fw) +P(ffl(fw) - ”-)

1 1
g E CE < ; — E & —_—
"o I((U §i 5= 0) +p ” I(w & < 0) (4%

=0 fry=1

Now rewrite the argument of the penalty function in terms correctly classified samples,

1 «— 1
RA(w):——;L—O- Y Hw-&<0)+p l—a—;; > Iw-&>0)

;=0 =1
The definition of ¢ gives z; = —& when y; = 0, and 2 = & when y; = 1. which yiclds
1 1
RA(w):—%ZI(wwi}_O)—kp 1—&—;—}—1—21(w'.z.5>0) (9)
iy =0 iyl

To complete the proof we verify conditions 2.1.1-2.1.3 in Lemma 2.1, Let Z = {21,....2,}. For
any w € RH1 et

= 1, w-zz=0"forall ;€ Z
. otherwisc

M e Z 00550 |W * 24
and let

G=w-—(5/2.0), 0B



This gives

Gezp >48/2>0,  when (w-z > 0)or (w-z =0y = 0)
Gz < -8/2<0. when (w-2 <0)or (w-2=01y=1)

and therefore condition 2.1.1 holds and (5) can be written

1
RA(w)=RA(d)):-——~ Z IHw-2,>0)+p 1—0—7 Hw-z >0)
ey =0 1 dyp=1
which verifies condition 2.1.2, Defining Jy (&) = {i € JH (W) 1 y; = 0} and J;F (&) = {i € JH(&) :

yi = 1} gives

1 ,
Rafo) = =1 @) +p (1= 0 = -1 @)
The first term on the right side is monotonically decrcasing in |Jgf ()] and the penalty term
is monotonically decreasing in |J;H(w)|. Since JH (&) = J& (@) U J7 (). the right side of this
expression cstablishes a monotonic relation between nested sets Jt and the values of R4. This
verifies condition 2.1.3 and completes our proof. ¢
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